Abstract

Today, various stakeholders provide a large number of functionally similarWeb Services (WS) to meet increasingly complex business needs. Therefore, to distinguish similar WS, some researchers have proposed using the non-functional characteristics, named Quality of Service (QoS), and user’s needs, expressed through Quality of Experience (QoE). Thus, all those QoS and QoE attributes should be taken into account in predicting WS quality jointly, called WS QoSE (Quality of Service and Experience). However, these attributes are different in nature, i.e., QoS is data-driven and numerical, while QoE is expert-based and linguistic. Consequently, to predict WS QoSE, in this paper, we propose a hybrid fuzzy inference approach, composing both quantitative and qualitative data inputs into WS QoSE output by applying the adaptive neuro-fuzzy inference system (ANFIS). The developed prototype allows us to implement the proposed approach, investigate its performance, and study the effect of QoE attributes on WS QoSE. The results of the two experiments show good performance and suitability of the proposed hybrid fuzzy inference approach for predicting WS QoSE based on combining QoS and QoE attributes. We expect that those results inspire researchers and practitioners to understand the WS QoSE better and develop user needs matching WS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.