Abstract
The prognostics health management (PHM) from the systematic view is critical to the healthy continuous operation of process manufacturing systems (PMS), with different kinds of dynamic interference events. This paper proposes a three leveled digital twin model for the systematic PHM of PMSs. The unit-leveled digital twin model of each basic device unit of PMSs is constructed based on edge computing, which can provide real-time monitoring and analysis of the device status. The station-leveled digital twin models in the PMSs are designed to optimize and control the process parameters, which are deployed for the manufacturing execution on the fog server. The shop-leveled digital twin maintenance model is designed for production planning, which gives production instructions from the private industrial cloud server. To cope with the dynamic disturbances of a PMS, a big data-driven framework is proposed to control the three-level digital twin models, which contains indicator prediction, influence evaluation, and decision-making. Finally, a case study with a real chemical fiber system is introduced to illustrate the effectiveness of the digital twin model with edge-fog-cloud computing for the systematic PHM of PMSs. The result demonstrates that the three-leveled digital twin model for the systematic PHM in PMSs works well in the system's respects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.