Abstract

The power coupling equation and energy consumption model for enhancing the fuel economy and power performance of plug-in hybrid electric trucks (PHETs) are proposed based on the economic velocity planning strategy (EVPS-DSIDP), which takes into account the driving style and an improved dynamic programming (IDP) algorithm. This strategy employs a fuzzy controller to identify the driving style, and optimizes the efficiency and accuracy of the conventional dynamic programming (DP) algorithm by associating decision variables, dynamically adjusting the discretization step size, and restricting the state space. Additionally, a penalty function is introduced to enhance the robustness of the DP algorithm. Under our EVPS-DSIDP, the variation of velocity is liberated from the constraints of fixed driving conditions, and directly correlates with road information and driving styles, which is of significant importance for addressing energy management issues in real-time traffic conditions. Moreover, the proposed IDP algorithm can improve computational efficiency while ensuring calculation accuracy, thereby greatly enhancing the potential for the practical application of this algorithm in real-world vehicle scenarios. The simulation results demonstrate that compared to the rule-based control strategy, the application of the proposed EVPS-DSIDP in the economy velocity planning strategy can achieve an average reduction of 2.88% in economic costs and 10.6% in travel time across different driving styles. This approach offers a more comprehensive optimization of both fuel economy and power performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.