Abstract

The perception system plays a crucial role by integrating LiDAR and various sensors to perform localization and object detection, which ensures the security of intelligent driving. However, existing research indicates that LiDAR is vulnerable to sensor attacks, which lead to inappropriate driving strategies and need effective attack recognition methods. Previous LiDAR attack recognition methods rely on fixed anomaly thresholds obtained from depth map data distributions in specific scenarios as static anomaly boundaries, which lead to reduced accuracy, increased false alarm rates, and a lack of performance stability. To address these problems, we propose an adaptive LiDAR attack recognition framework capable of adjusting to different driving scenarios. This framework initially models the perception system by integrating the vehicle dynamics model and object tracking algorithms to extract data features, subsequently employing Gaussian Processes for the probabilistic modeling of these features. Finally, the framework employs sparsification computing techniques and a sliding window strategy to continuously update the Gaussian Process model with window data, which achieves incremental learning that generates uncertainty estimates as dynamic anomaly boundaries to recognize attacks. The performance of the proposed framework has been evaluated extensively using the real-world KITTI dataset covering four driving scenarios. Compared to previous methods, our framework achieves a 100% accuracy rate and a 0% false positive rate in the localization system, and an average increase of 3.43% in detection accuracy in the detection system across the four scenarios, which demonstrates superior adaptive capabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.