Abstract

The supply, storage, and (international) transport of green hydrogen (H2) are essential for the decarbonization of the energy sector. The goal of this study was to assess the final cost-price and carbon footprint of imported green H2 in the market via maritime shipping of liquid organic hydrogen carriers (LOHCs), including dibenzyl toluene-perhydro-dibenzyltoluene (DBT-PDBT) and toluene-methylcyclohexane (TOL-MCH) systems. The study focused on logistic steps in intra-European supply chains in different scenarios of future production in Portugal and demand in the Netherlands and carbon tariffs between 2030 and 2050. The case study is based on a formally accepted agreement between Portugal and the Netherlands within the Strategic Forum on Important Projects of Common European Interest (IPCEI). Under the following assumptions, the results show that LOHCs are a viable technical-economic solution, with logistics costs from 2030 to 2050 varying between 0.30 and 0.37 €/kg-H2 for DBT-PDBT and 0.28–0.34 €/kg-H2 for TOL-MCH. The associated CO2 emissions of these international H2 supply chains are between 0.46 and 2.46 kg-CO2/GJ (LHV) and 0.55–2.95 kg-CO2/GJ (LHV) for DBT-PDBT and TOL-MCH, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call