Abstract
A halogen-free, formaldehyde-free, efficient, durable, NP flame retardant, the ammonium salt of meglumine phosphoric ester acid (ASMPEA), was prepared. The Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR, 13C NMR, and 31P NMR) results indicated that ASMPEA was grafted onto cotton fibers by P-O-C covalent bonds. The LOI value of 30 wt% ASMPEA-treated cotton fabric was 40.2%, and after 50 laundering cycles (LCs), the LOI value decreased to 29.4%, indicating that the cotton fibers treated with ASMPEA were endowed with excellent durable flame retardancy. Thermogravimetry (TG), cone calorimetry, and vertical flammability test results showed that ASMPEA-treated cotton decomposed into phosphoric acid or polyphosphoric acid during combustion, which promoted the thermal degradation and charring of treated cotton fabrics and hindered the spread of flames. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive spectrometry (EDS) verified that ASMPEA infiltrated the cotton fiber without obviously affecting its surface morphology or crystal structure; however, the mechanical properties of the treated cotton fabric decreased slightly. These results confirm that ASMPEA achieved excellent durable flame retardancy when used to coat cotton fabric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.