Abstract

A novel easily made thienoacene-based organic semiconductor, i.e., dinaphtho[3,4-d:3′,4′-d′]benzo[1,2-b:4,5-b′]dithiophene (Ph5T2), was synthesized in high yield, and its thermal stability, electrochemical properties, thin-film morphology and field-effect mobility were investigated. Ph5T2 exhibit excellent thermal stability with a decomposition temperature (Td) of 427°C. Thin-film X-ray diffraction (XRD) and atomic force microscopy (AFM) characterizations indicate that Ph5T2 can form highly ordered films with large domain size on the para-sexiphenyl (6P)-modified substrates. Organic thin-film transistors (OTFTs) with top-contact geometry based on Ph5T2 exhibit mobilities up to 1.2cm2V−1s−1 in ambient. The devices are highly stable and exhibit almost no performance degradation during 3months storage under ambient conditions with relative humidity up to 80%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.