Abstract
Ear recognition is a new biometric technology that competes with well-known biometric modalities such as fingerprint, face and iris. However, this modality suffers from common image acquisition problems, such as change in illumination, poor contrast, noise and pose variation. Using a 3D ear models reduce rotation, scale variation and translation-related problems, but they are computationally expensive. This paper presents a new architecture of ear biometrics that aims at solving the acquisition problems of 2D ear images. The proposed system uses a new ear image contrast enhancement approach based on the gray-level mapping technique, and uses an artificial bee colony (ABC) algorithm as an optimizer. This technique permits getting better-contrasted 2D ear images. In the feature extraction stage, the scale invariant feature transform (SIFT) is used. For the matching phase, the Euclidean distance is adopted. The proposed approach was tested on three reference ear image databases: IIT Delhi, USTB 1 and USTB 2, and compared with traditional ear image contrast enhancement approaches, histogram equalization (HE) and contrast limited adaptive histogram equalization (CLAHE). The obtained results show that the proposed approach outperforms traditional ear image contrast enhancement techniques, and increases the amount of detail in the ear image, and consequently improves the recognition rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.