Abstract

Bacteria use two-component system (TCS) signaling pathways to sense and respond to peptides involved in host defense, quorum sensing and inter-bacterial warfare. However, little is known about the broad peptide-sensing capabilities of TCSs. In this study, we developed an Escherichia coli display method to characterize the effects of human antimicrobial peptides (AMPs) on the pathogenesis-regulating TCS PhoPQ of Salmonella Typhimurium with much higher throughput than previously possible. We found that PhoPQ senses AMPs with diverse sequences, structures and biological functions. We further combined thousands of displayed AMP variants with machine learning to identify peptide sub-domains and biophysical features linked to PhoPQ activation. Most of the newfound AMP activators induce PhoPQ in S. Typhimurium, suggesting possible roles in virulence regulation. Finally, we present evidence that PhoPQ peptide-sensing specificity has evolved across commensal and pathogenic bacteria. Our method enables new insights into the specificities, mechanisms and evolutionary dynamics of TCS-mediated peptide sensing in bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.