Abstract
Antimicrobial cationic peptides are a host defense mechanism of many animal species including mammals, insects, and amphibians. Salmonella typhimurium is an enteric and intracellular pathogen that interacts with antimicrobial peptides within neutrophil and macrophage phagosomes and at intestinal mucosal surfaces. The Salmonella spp. virulence regulators, PhoP and PhoQ, activate the transcription of genes (pag) within macrophage phagosomes necessary for resistance to cationic antimicrobial peptides. One PhoP-activated gene, pagB, forms an operon with pmrAB (5' pagB-pmrA-pmrB 3'), a two-component regulatory system involved in resistance to the antimicrobial peptides polymyxin, azurocidin (CAP37), bactericidal/permeability-increasing protein (BPI or CAP57), protamine, and polylysine. Expression of pmrAB increased transcription of pagB-pmrAB by activation of a promoter 5' to pagB. pmrAB is also expressed from a second promoter, not regulated by PhoP-PhoQ or PmrA-PmrB, located within the pagB coding sequence. S. typhimurium strains with increased pag locus expression were demonstrated to be polymyxin resistant because of induction of pagB-pmrAB; however, PmrA-PmrB was not responsible for the increased sensitivity of PhoP-null mutants to NP-1 defensin. Therefore, PhoP regulates at least two separate networks of genes responsible for cationic antimicrobial peptide resistance. These data suggest that resistance to the polymyxin-CAP family is controlled by a cascade of regulatory protein expression that activates transcription upon environmental sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.