Abstract

In this paper, an experimental evaluation of received signal strength indicator (RSSI-based) localization methods in an indoor wireless network is studied. The major contributions of this work are twofold. First, the well-known and widely used min–max and trilateration methods are tested in the cases of without and with human movement effects. By this purpose, how RSSI data during human movements affect the accuracy of such methods and which method shows the best position estimation result, have been investigated. Second, we also design and develop a new RSSI filter to automatically reduce RSSI variation and the position estimation error caused by human movements. Experiments are carried out in a parking building. An LPC2103F microcontroller interfaced with a CC2500 RF transceiver as a low-cost, low power, 2.4 GHz radio module is used as a wireless node. Results demonstrate that without human movement effects, the performances by both localization methods are not much different. However, with human movement effects, the min–max method shows better accuracy than the trilateration method in handling the RSSI variation problem. The results also indicate that by applying the proposed RSSI filter, it can directly cope with the RSSI variation problem caused by humans. The localization error decreases by 69.87% for the case of the min–max method, and it decreases by 72.74% for the case of the trilateration method (the best case). Compared with the case of employing the moving average filter as the commonly used filter, the localization error only decreases by 18.67% and 12.99%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.