Abstract
This paper presents a basic model of an automated system for predicting the detection limit and precision profile (plot of relative standard deviation (RSD) of measurements against concentration) in chromatography. The fundamental assumption is that the major source of response errors at low sample concentrations is background noise and at high concentrations, it is the volumes injected into an HPLC system by a sample injector. The noise is approximated by the mixed random processes of the first order autoregressive process AR(1) and white noise. The research procedures are: (1) the description of the standard deviation (SD) of measurements in terms of the parameters of the mixed random processes; (2) the algorithm for the parameter estimation of the mixed processes from actual background noise; (3) the mathematical distinction between noise and signal in a chromatogram. When compounds are chromatographically separated, each obtained signal is given the detection limit and precision profile on laboratory-made software. A file of a chromatogram is the only requirement for the theoretical prediction of measurement uncertainty and therefore the repeated measurements of real samples can be dispensed with. The theoretically predicted RSDs are verified by comparing them with the statistical RSDs obtained by repeated measurements. Signal shapes on noise are illustrated at the detection limit and quantitation limit, the signal-to-noise ratios of which are close to the widely adopted values, 3 and 10, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.