Abstract
A sound barrier, also called a noise barrier, plays an irreplaceable role in traffic noise abatement. The Federal Highway Administration’s (FHWA) highway noise regulation requires each state highway agency to maintain a complete inventory of all constructed noise-abatement features. Although key information for most of the newly constructed sound barriers has been inventoried, public transportation agencies are still struggling to keep close track of the in-service barriers because their inventory information is nonexisting, and manual inventory remains time-consuming, labor-intensive, and often dangerous. Therefore, many agencies have shown more interest in exploring the possibility of using light detection and ranging (LiDAR) data for assisting in sound barrier inventory, thanks to the widely available data set and much-improved data quality. This study proposes a LiDAR-based sound barrier inventory method to automatically extract the sound barrier’s location and measure the corresponding geometry. The extraction of a sound barrier is achieved using its unique features after random sample consensus (RANSAC)-based ground extraction and region-growing segmentation. The geometry measurement of the sound barrier is performed by analyzing the detailed dimension of the extracted point cloud, including location, height, length, and lateral offset. The experimental test conducted near Carver, Massachusetts showed the results with a precision rate of 99.9% and a recall rate of 93.8%. Moreover, the outcome of the experimental test has demonstrated the robustness of the proposed method in different complexities of the background and sound barrier types (linear and zigzag). This study has demonstrated the feasibility of using LiDAR for effectively inventorying in-service barriers. Besides the critical application of asset management, the detailed location and geometry information provided by the proposed method can provide valuable insight for other critical applications, such as traffic noise modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Transportation Engineering, Part A: Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.