Abstract

This paper presents a fully automated approach to detect the intima and media-adventitia borders in intravascular ultrasound images based on parametric active contour models. To detect the intima border, we compute a new image feature applying a combination of short-term autocorrelations calculated for the contour pixels. These feature values are employed to define an energy function of the active contour called normalized cumulative short-term autocorrelation. Exploiting this energy function, the intima border is separated accurately from the blood region contaminated by high speckle noise. To extract media-adventitia boundary, we define a new form of energy function based on edge, texture and spring forces for the active contour. Utilizing this active contour, the media-adventitia border is identified correctly even in presence of branch openings and calcifications. Experimental results indicate accuracy of the proposed methods. In addition, statistical analysis demonstrates high conformity between manual tracing and the results obtained by the proposed approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.