Abstract

ABSTRACTHeart disease continues to be a primary cause of mortality globally, highlighting the critical necessity for efficient early prediction and classification techniques. This study presents a new hybrid model attention‐based CNN‐Bi‐LSTM that integrates the SMOTE with an attention‐driven improved convolutional neural network‐recurrent neural network architecture to improve the classification of heart sounds, especially from imbalanced datasets. Heart sounds are difficult to classify because of their complex acoustic properties and the variability of their characteristics across frequency and temporal domains. The proposed model utilises an advanced CNN to effectively extract global and local features, in conjunction with a bidirectional long short‐term memory network to improve the architecture by capturing contextual information from both preceding and subsequent time sequences. The incorporation of spatial attention within the CNN and temporal attention in the RNN enables the model to concentrate on the most pertinent audio segments. To address the challenges presented by imbalanced and noisy datasets that may impede the efficacy of deep learning algorithms, our model employs SMOTE to improve data representation. The hybrid model outperformed popular models such as CNN, LSTM and CNN‐LSTM, achieving a classification accuracy of more than 97% on the PCG and PASCAL heart sound datasets. The findings demonstrate the model's reliability as an initial evaluation tool in clinical settings, thereby improving support for cardiovascular disease diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.