Abstract

ABSTRACT Capturing twin nucleation in crystal plasticity is a long-standing problem due to its localisation and site sensitivity. Quantifying local energy to induce a stable twin is a unique challenge and profoundly informs the microstructural evolution. We performed nudged elastic band atomistic calculations identifying minimum energy path and activation energy for twin nucleation. This enables gauging the transformations from an initial state without twins to a final state with twins under various boundary conditions. The role of stress and atomic structure in twinning can be understood by the minimum energy path, energy barrier and relaxed energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call