Abstract

We study numerically the minimum energy path and energy barriers for dislocation nucleation in a two-dimensional atomistic model of strained epitaxial layers on a substrate with lattice misfit. Stress relaxation processes from coherent to incoherent states for different transition paths are determined using saddle point search based on a combination of repulsive potential minimization and the Nudged Elastic Band method. The minimum energy barrier leading to a final state with a single misfit dislocation nucleation is determined. A strong tensile-compressive asymmetry is observed. This asymmetry can be understood in terms of the qualitatively different transition paths for the tensile and compressive strains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call