Abstract

Abstract In this study, we examine the pricing of vulnerable options under a stochastic volatility model based on the partial differential equation approach. Specifically, we consider a multiscale stochastic volatility model that is assumed to be driven by two diffusions (fast-scale and slow-scale) and use an asymptotic expansion approach to drive the approximate pricing formulas of vulnerable options, which allows the counterparty credit risk at maturity. Furthermore, we provide the Greek Delta of vulnerable options for the dynamic hedge and present the numerical results to examine the effect of the multiscale stochastic volatility model and to show the accuracy of our formula.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.