Abstract

Polymerized small molecular acceptors (PSMAs) have been instrumental in driving the advancements in power conversion efficiencies (PCEs) of all-polymer solar cells (all-PSCs). However, PSMAs commonly face challenges such as low molecular weights and notable batch-to-batch variation, posing significant obstacles to the transition of all-PSCs from lab to fab. Herein, a novel PSMA, which we refer to PAY-IT with an asymmetric conjugated skeleton is reported. The A–D1A'D2–A-type asymmetric monomer endows PAY-IT a random conjugated backbone, thus offering a desired temperature dependent aggregation behavior, which is hardly observed in conventional PSMAs. This characteristic facilitates chain growth during polymerization, thus yielding high molecular weights and low batch-to-batch sensitivity for the polymer. Moreover, the “S-shape” configuration of the asymmetric monomer endows PAY-IT good planarity and excellent charge transport property. As a result, the all-PSC consisted of PAY-IT and PM6 showcased a remarkable PCE of 14.9 %. More importantly, three batches of PAY-IT with number-average molecular weights ranging from 18.3 to 26.2 kDa exhibited nearly identical PCE (14.4–14.9 %), demonstrating superior batch-to-batch reproducibility of this polymer acceptor. This work explored PSMAs with asymmetric skeleton for the first time, and the results demonstrated a new design concept for the development of state-of-the-art PSMAs with minimal batch-to-batch variation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.