Abstract

Small fringing marshes are ecologically important habitats often impacted by petroleum. We characterized the phylogenetic structure (16S rRNA) and petroleum hydrocarbon degrading alkane hydroxylase genes (alkB and CYP 153A1) in a sediment microbial community from a New Hampshire fringing marsh, using alkane-exposed dilution cultures to enrich for petroleum degrading bacteria. 16S rRNA and alkB analysis demonstrated that the initial sediment community was dominated by Betaproteobacteria (mainly Comamonadaceae) and Gammaproteobacteria (mainly Pseudomonas), while CYP 153A1 sequences predominantly matched Rhizobiales. 24 h of exposure to n-hexane, gasoline, dodecane, or dilution culture alone reduced functional and phylogenetic diversity, enriching for Gammaproteobacteria, especially Pseudomonas. Gammaproteobacteria continued to dominate for 10 days in the n-hexane and no alkane exposed samples, while dodecane and gasoline exposure selected for gram-positive bacteria. The data demonstrate that small fringing marshes in New England harbor petroleum-degrading bacteria, suggesting that petroleum degradation may be an important fringing marsh ecosystem function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.