Abstract
Ground-motion attenuation relations have an important impact on seismic hazard analyses. Ground-motion modeling is particularly sensitive to assumptions about wave-propagation attenuation (crustal Q and geometrical spreading), as well as source and site conditions. Studies of path attenuation from earthquakes in eastern North America (ena) provide insights into the appropriateness of specific attenuation relations. An Electric Power Research Institute (EPRI) (2003, 2004) study combines published ena ground-motion attenuation relations into four model forms: single-corner, double-corner, hybrid-empirical, and finite-fault. When substituted in the U.S. Geological Survey 2002 national seismic hazard maps for the five ena relations originally used in those hazard calculations, the EPRI (2003) relations predict similar ground motions and hazard at short periods ( 0.5 sec), relative to the 2002 national maps. A major reason for this difference is due to the crustal seismic-wave attenuation model assumed in a few of the ena relations combined into the EPRI (2003, 2004) models. Although appropriate differences in geometrical spreading models among ena relations can also be significant, a few ena relations have 1-Hz Q -values ( Q ) that are below the EPRI (1993) consensus range for Q when coupled with a geometrical spreading of R −0.5. The EPRI (2003, 2004) single-corner relation is strongly influenced by the inclusion of ena relations with assumed Q below the EPRI (1993) range, which explains much of the discrepancy in predictions at longer periods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.