Abstract
A method is presented to reduce noise in chaotic attractors without knowing the underlying maps. The method is based on using Artificial Neural Network (ANN) for moderate levels of additive noise. For high levels of additive noise, a combination of a refinement procedure with ANN is used. In this case, only one refinement is needed for the successful use of ANN. The obtained ANN model is used for long-term predictions of the future behavior of a Henon attractor, using information based only on past values.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have