Abstract

The advent of Nanoscale IC technology towards pulse-based neural systems reactivates the dead nervous about restoring the functionality of paralytic disorders. This work reports in first time a design of a novel CMOS biological neuron system, which replaces a dead neuron between two neurons to restore communication in paralyzed individuals. The work binds into three stages: design of a spiking leaky Integrator and Fire (LIF) neuron with refractory period mechanisms, which achieves a low power consumption of 2.4 μW, in the first stage; an adaptive homeostatic synapse with short and long-term spike plasticity, that reconfigure the spiking neuron networks of multichannel sensor electrodes to record the electric signal from the active cell as second stage; the final stage presents a low-power common source current reuse regulated cascode (CS-CR-RGC) TIA for amplifying the weak synapse current signal, which achieves a high gain of 135.71 dBΩ with an optimized noise performance of 0.19 pA/Hz. The entire work is designed and implemented using a CMOS 65 nm commercial process that occupies a die area of 400 μm × 120 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.