Abstract

This Perspective presents recent advances in our knowledge of the fundamental elementary mechanisms involved in the low- and high-temperature molecular mass growth processes to polycyclic aromatic hydrocarbons in combustion systems and in extraterrestrial environments (hydrocarbon-rich atmospheres of planets and their moons, cold molecular clouds, circumstellar envelopes). Molecular beam studies combined with electronic structure calculations extracted five key elementary mechanisms: Hydrogen Abstraction-Acetylene Addition, Hydrogen Abstraction-Vinylacetylene Addition, Phenyl Addition-DehydroCyclization, Radical-Radical Reactions, and Methylidyne Addition-Cyclization-Aromatization. These studies, summarized here, provide compelling evidence that key classes of aromatic molecules can be synthesized in extreme environments covering low temperatures in molecular clouds (10 K) and hydrocarbon-rich atmospheres of planets and their moons (35-150 K) to high-temperature environments like circumstellar envelopes of carbon-rich Asymptotic Giant Branch Stars stars and combustion systems at temperatures above 1400 K thus shedding light on the aromatic universe we live in.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.