Abstract
This Perspective presents recent advances in our knowledge of the fundamental elementary mechanisms involved in the low- and high-temperature molecular mass growth processes to polycyclic aromatic hydrocarbons in combustion systems and in extraterrestrial environments (hydrocarbon-rich atmospheres of planets and their moons, cold molecular clouds, circumstellar envelopes). Molecular beam studies combined with electronic structure calculations extracted five key elementary mechanisms: Hydrogen Abstraction-Acetylene Addition, Hydrogen Abstraction-Vinylacetylene Addition, Phenyl Addition-DehydroCyclization, Radical-Radical Reactions, and Methylidyne Addition-Cyclization-Aromatization. These studies, summarized here, provide compelling evidence that key classes of aromatic molecules can be synthesized in extreme environments covering low temperatures in molecular clouds (10 K) and hydrocarbon-rich atmospheres of planets and their moons (35-150 K) to high-temperature environments like circumstellar envelopes of carbon-rich Asymptotic Giant Branch Stars stars and combustion systems at temperatures above 1400 K thus shedding light on the aromatic universe we live in.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have