Abstract

The continuous glucose monitoring system is an effective tool, which enables the users to monitor their blood glucose (BG) levels. Based on the continuous glucose monitoring (CGM) data, we aim at predicting future BG levels so that appropriate actions can be taken in advance to prevent hyperglycemia or hypoglycemia. Due to the time-varying nonstationarity of CGM data, verified by Augmented Dickey-Fuller test and analysis of variance, an autoregressive integrated moving average (ARIMA) model with an adaptive identification algorithm of model orders is proposed in the prediction framework. Such identification algorithm adaptively determines the model orders and simultaneously estimates the corresponding parameters using Akaike Information Criterion and least square estimation. A case study is conducted with the CGM data of diabetics under daily living conditions to analyze the prediction performance of the proposed model together with the early hypoglycemic alarms. Results show that the proposed model outperforms the adaptive univariate model and ARIMA model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.