Abstract

Abstract An areal rainfall estimator based on differential propagation phase is proposed and evaluated using the Bureau of Meteorology Research Centre (BMRC) C-POL radar and a dense gauge network located near Darwin, Northern Territory, Australia. Twelve storm events during the summer rainy season (December 1998–March 1999) are analyzed and radar–gauge comparisons are evaluated in terms of normalized error and normalized bias. The areal rainfall algorithm proposed herein results in normalized error of 14% and normalized bias of 5.6% for storm total accumulation over an area of around 100 km2. Both radar measurement error and gauge sampling error are minimized substantially in the areal accumulation comparisons. The high accuracy of the radar-based method appears to validate the physical assumptions about the rain model used in the algorithm, primarily a gamma form of the drop size distribution model, an axis ratio model that accounts for transverse oscillations for D ≤ 4 mm and equilibrium shapes for D > ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.