Abstract

Many image/video processing algorithms require FIFO for filtering. The FIFO size is proportional to the length of the filters and input data width, causing large area and power consumption. We have proposed an energy- and area-efficient FIFO design for image/video applications through FIFO with error-reduced data compression (FERDC) and near-threshold operation. On architecture level, FERDC technique is proposed to reduce the size and power consumption of the FIFO by utilizing the spatial correlation between neighboring pixels and performing error-reduced data compression together with quantization to minimize the mean square error (MSE). On circuit level, near-threshold operation is adopted to achieve further power reduction while maintaining the required performance. To demonstrate the proposed FIFO, it has been implemented using a 0.18- $\mu $ m CMOS process technology. The implementation covers different FIFO length, including 128, 256, 512, and 1024. The experimental results show that the proposed FIFO operating at 0.5 V and 28.57 MHz achieves up to 99%, 65%, and 34.91% reduction in dynamic power, leakage power, and area, respectively, with a small MSE of 2.76, compared with the conventional FIFO design. The proposed FIFO can be applied to a wide range of image/video signal processing applications to achieve high area and energy efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call