Abstract

A computational procedure is developed to solve the problems of coupled motion of a rigid body and a viscous incompressible fluid; the former is mounted on elastic springs, and the latter is surrounding the rigid body. The arbitrary Lagrangian-Eulerian method is employed to incorporate the interface conditions between the body and the fluid. The streamline upwind/Petrov-Galerkin finite element method is used for the spatial discretization of the fluid domain, and the predictor-corrector method is used for the time integration. The method is applied to evaluate the added mass and the added damping of a circular cylinder as well as to simulate the vibration of a circular cylinder induced by vortex sheddings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.