Abstract

We discuss in this article the numerical solution of the Cahn-Hilliard equation modelling the spinodal decomposition of binary alloys. The numerical methodology combines a second-order finite difference time discretization with a mixed finite element space approximation and a least squares formulation based on an approximate factorization of a fourth-order elliptic operator which appears in the numerical model. The least squares problem—which is linear—is solved by a preconditioned conjugate gradient algorithm. The results of numerical experiments illustrate the possibilities of the methods discussed in this article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.