Abstract
The High Performance Conjugate Gradient (HPCG) benchmark has been recently proposed as a complement to the High Performance Linpack (HPL) benchmark currently used to rank supercomputers in the Top500 list. This new benchmark solves a large sparse linear system using a multigrid preconditioned conjugate gradient (PCG) algorithm. The PCG algorithm contains the computational and communication patterns prevalent in the numerical solution of partial differential equations and is designed to better represent modern application workloads which rely more heavily on memory system and network performance than HPL. GPU accelerated supercomputers have proved to be very effective, especially with regard to power efficiency, for accelerating compute intensive applications like HPL. This paper will present the details of a CUDA implementation of HPCG, and the results obtained at full scale on the largest GPU supercomputers available: the Cray XK7 at ORNL and the Cray XC30 at CSCS. The results indicate that GPU accelerated supercomputers are also very effective for this type of workload.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.