Abstract

We suggest a new approach to stochastic integration in infinite-dimensional spaces that is based on representing random variables on Banach spaces as real-valued processes on an interval. We prove stochastic integrability of operator-valued processes on general separable Banach spaces under the conditions that do not depend on the norm of the space and show how our methods can be applied to studying infinite-dimensional stochastic differential equations. In particular, our results provide a natural construction of the stochastic integral in abstract Wiener spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.