Abstract

This study contributes to the development of a systematic methodology for the torque and power-flow analyses of multi-input multi-output (MIMO) epicyclic gear mechanisms (EGMs) with or without reaction link based on the concept of fundamental circuit. The studies on power-flow analysis of EGMs are mostly done in the context of efficiency formulations. In the opinion of the authors, the design process of the MIMO mechanism involves not only finding the configuration that provides the correct velocity ratios but also meeting other kinematic requirements and ensuring that the two inputs have a mutually constructive nature. To demonstrate the analysis, a new motor/generator integrated hybrid transmission design is used to show how the torque acting on each link of an epicyclic gear train (EGT) can be systematically solved in terms of input torque(s) and/or controlled output torque. This paper presents a unification of kinematic and torque balance approaches for the analysis of MIMO epicyclic-type transmission trains. The results presented are meant to deepen the knowledge as to how and why a MIMO epicyclic-type transmission should operate in a certain way under the given conditions. In the process, this paper explores the theoretical bases of operation of the Toyota Hybrid System and the root cause of some confusion in the field of EGTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.