Abstract

Abstract After conceptual design and dimensional synthesis of a compound epicyclic gear train (EGT), its performance evaluation involves kinematic analysis, force analysis, torque analysis, and power-flow analysis. In recent years, graph theory has proven to be a powerful symbolic representation for design of mechanisms. Application of graph theory for the topological representation and kinematic analysis of EGTs is quite well established. However, graph theory based methods for power-flow and force analysis lack certain features, making them unsuitable or difficult to implement in a general purpose program for automatic design of EGTs. The traditional approach has been to perform force and torque analysis first, and then use the results to perform power-flow analysis. This paper presents a novel, systematic approach in which power-flow analysis is performed first, and then the results are used to determine the inter-link forces in epicyclic spur-gear trains. This method is based only on the graph of the gear-train and the angular velocities of the elements, and hence, is more suitable for automatic computation, simpler to implement in a program, and also avoids requiring the formulation of tedious torque equilibrium equations. A numerical example is presented to illustrate the simplicity and generality of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call