Abstract

Differential protection normally detects short circuits and ground faults in the windings of a power transformer and its terminals. Inter-turn faults refer to flashovers among the electrodes that arise only in a similar type of physical winding. Inter-turn faults can be examined when the adequate sum of turns is served as short-circuited. In electrical protection, it is difficult to detect inter-turn faults. An inter-turn fault of small magnitude is based on the limited number of turns that resultantly provide a large quantity of current. Due to this reason, protection that comes from the differential scenario possesses a higher degree of sensitivity without causing unwanted operations during external faults. In this paper, a protection-based stability method is proposed whereby external voltages are applied at the low-voltage (LV) side of the transformer while keeping the high-voltage (HV) side short-circuited. This was conducted using a three-phase power transformer (rating: 100 MVA, 380 kV/13.8 kV) at SWCC Shoaiba Power Plant, Saudi Arabia. In this work, differential protection (87T) and high-impedance differential protection for HV-restricted earth faults (REFs) were verified by creating In-Zone and Out-Zone fault conditions to ensure current transformer (CT) circuits and tripping logic. All of the IEDs, protection, and control schemes involved were designed by ABB. This method verifies protection stability for power transformers by implementing differential protection (87T) and high-impedance restricted earth fault (64HV) schemes through creating In-Zone and Out-Zone fault conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call