Abstract

We synthesized a molecule-based proton-electron mixed conductor (PEMC), a Pt(III) dithiolate complex with 1,4-naphthoquinone skeletons. The π-planar Pt complex involves a π-stacking column, which is connected by one-dimensional hydrogen bonding chains composed of water molecules. The room-temperature (RT) proton conductivity is 8.0 × 10-5 S cm-1 under ambient conditions, which is >2 orders of magnitude higher than that of the isomorphous Ni complex (7.2 × 10-7 S cm-1). The smaller activation energy (0.23 eV) compared to that of the Ni complex (0.42 eV) possibly originates from the less dense water, which promotes the reorientational dynamics, in the Pt complex with an expanded lattice, namely, negative chemical pressure upon substitution of Ni with the larger Pt. In addition, the Pt complex shows a relatively high RT electronic conductivity of 1.0 × 10-3 S cm-1 caused by the π-columns, approaching an ideal PEMC with comparable proton and electron conduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.