Abstract

Inverse synthetic aperture radar (ISAR) imaging of the target with the non-rigid body is very important in the field of radar signal processing. In this paper, a motion compensation method combined with the preprocessing and global technique is proposed to reduce the influence of micro-motion components in the fast time domain, and the micro-Doppler (m-D) signal in the slow time domain is separated by the improved complex-valued empirical-mode decomposition (CEMD) algorithm, which makes the m-D signal more effectively distinguishable from the signal for the main body by translating the target to the Doppler center. Then, a better focused ISAR image of the target with the non-rigid body can be obtained consequently. Results of the simulated and raw data demonstrate the effectiveness of the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call