Abstract

Nowadays social networks such as Twitter, LinkedIn, and Facebook are a popular and necessary platform. It is considered a miniature of an actual social network because of its advantages in connecting and sharing information between users. The analysis of data on online social networks has become a field that has attracted a lot of attention from the research community and anchor link prediction is one of the main research directions in this field. Depending on demand, a user can simultaneously participate in many different online social networks, anchor link prediction is a kind of task that determines the identity of a user on many different social networks. In this article, we proposed an algorithm that determines missing/future anchor links between users from two different online social networks. Our algorithm utilizes the graph attention technique to represent the source and target network into the low-dimension embedding spaces, we then apply the canonical correlation analysis to recline their embeddings into same latent spaces for final prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.