Abstract

This article proposes an approach to resolve multiple attribute group decision making (MAGDM) problems with interval-valued intuitionistic trapezoidal fuzzy numbers (IVITFNs). We first introduce the cut set of IVITFNs and investigate the attitudinal score and accuracy expected functions for IVITFNs. Their novelty is that they allow the comparison of IVITFNs by taking into accounting of the experts’ risk attitude. Based on these expected functions, a ranking method for IVITFNs is proposed and a ranking sensitivity analysis method with respect to the risk attitude is developed. To aggregate the information with IVITFNs, we study the desirable properties of the interval-valued intuitionistic trapezoidal fuzzy weighted geometric (IVITFWG) operator, the interval-valued intuitionistic trapezoidal fuzzy ordered weighted geometric (IVITFOWG) operator, and the interval-valued intuitionistic trapezoidal fuzzy hybrid geometric (IVITFHG) operator. It is worth noting that the aggregated value by using these operators is also an interval-valued intuitionistic trapezoidal fuzzy value. Then, based on these expected functions and aggregating operators, an approach is proposed to solve MAGDM problems in which the attribute values take the form of interval-valued intuitionistic fuzzy numbers and the expert weights take the form of real numbers. Finally, an illustrative example is given to verify the developed approach and to demonstrate its practicality and effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.