Abstract
The current exploration manifests the progress of a one-dimensional reactor for the production of methyl ethyl ketone (MEK) as a commercial-industrial solvent with a relatively rapid evaporation rate and high solvation ability. MEK has been extensively utilized in colorings, printing, artificial leather, and base oils. One of the methods for the production of MEK is catalytic dehydrogenation of 2-butyl alcohol in the temperature range of 650–750 K utilizing spherical ZnO catalyst. Considering the high cost of fossil fuels to achieve optimal energy consumption, thermal coupling with the Fischer–Tropsch reaction was employed. Eventually, an evolutionary genetic algorithm was adopted to optimize the reactor to maximize MEK production. MATLAB software was utilized for the modeling and optimization. The modeling results were verified by industrial data. Moreover, they indicated a 37 and 55.4% increase in the production rate of thermal coupling and optimal thermal coupling reactors, respectively.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have