Abstract
In this paper, a method is developed for the automated identification of cephalometric landmarks in orthodontics. The process of soft tissue edge detection is divided into two steps: detecting the sub-images that contained the required landmarks using combination of the Histograms of Oriented Gradients (HOG) descriptor with the Support Vector Machine (SVM), then utilizing Thresholding and Mathematical Morphological (TMM) algorithm to trace soft tissue profile. In addition, the mandible's edge is detected by the Active contours without edges (Chan-Vese method). Finally, the landmarks of soft tissue profile and the mandible's edge are pinned based on analyzing the contour plot of these lines. The simulation results have high accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.