Abstract

The analytical modeling of nanoscale Double-Gate MOSFETs (DG) requires generally several necessary simplifying assumptions to lead to compact expressions of current-voltage characteristics for nanoscale CMOS circuits design. Further, progress in the development, design and optimization of nanoscale devices necessarily require new theory and modeling tools in order to improve the accuracy and the computational time of circuits' simulators. In this paper, we propose a new particle swarm strategy to study the nanoscale CMOS circuits. The latter is based on the 2-D numerical Non-Equilibrium Green's Function (NEGF) simulation and a new extended long channel DG MOSFET compact model. Good agreement between our results and numerical simulations has been found. The developed model can also be incorporated into the nano-CMOS circuits' simulators to study CMOS-based devices without impact on the computational time and data storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.