Abstract

The diflavin reductases exemplified by mammalian cytochrome P450 reductase catalyze NADPH dehydrogenation and electron transfer to an associated monooxygenase. It has recently been proposed that double occupancy of the NADPH dehydrogenation site inhibits the NADPH to FAD hydride transfer step in this series of enzymes. This has important implications for the mechanism of enzyme turnover. However, the conclusions are drawn from a series of pre-steady-state stopped-flow experiments in which the data analysis and interpretation are flawed. Recent data published for P450-BM3 reductase show a decrease in the rate constant for pre-steady-state flavin oxidation with increasing NADP(+) concentration. This is interpreted as evidence of inhibition by multiple substrate binding. A detailed reanalysis shows that the data are in fact consistent with a simple single-binding-site model in which reversible hydride transfer causes the observed effect. Data for the related systems are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.