Abstract
Merging satellite precipitation products tends to reduce the errors associated with individual satellite precipitation products and has higher potential for hydrological applications. The current study evaluates the performance of merged multi-satellite precipitation dataset (daily temporal and 0.25° spatial resolution) developed using the Dynamic Bayesian Model Averaging algorithm across four different climate regions, i.e., glacial, humid, arid and hyper-arid regions, of Pakistan during 2000–2015. Four extensively evaluated SPPs over Pakistan, i.e., Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42V7, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Climate Prediction Center MORPHing technique (CMORPH), and Era-Interim, are used to develop the merged multi-satellite precipitation dataset. Six statistical indices, including Mean Bias Error, Mean Absolute Error, Root Mean Square Error, Correlation Coefficient, Kling-Gupta efficiency, and Theil’s U coefficient, are used to evaluate the performance of merged multi-satellite precipitation dataset over 102 ground precipitation gauges both spatially and temporally. Moreover, the ensemble spread score and standard deviation are also used to depict the spread and variation of precipitation of merged multi-satellite precipitation dataset. Skill scores for all statistical indices are also included in the analyses, which shows improvement of merged multi-satellite precipitation dataset against Simple Model Averaging. The results revealed that DBMA-MSPD assigned higher weights to TMPA (0.32) and PERSIANN-CDR (0.27). TMPA presented higher skills in glacial and humid regions with average weights of 0.32 and 0.37 as compared to PERSIANN-CDR of 0.27 and 0.25, respectively. TMPA and Era-Interim depicted higher skills during pre-monsoon and monsoon seasons, with average weights of 0.31 and 0.52 (TMPA) and 0.25 and 0.21 (Era-Interim), respectively. Merged multi-satellite precipitation dataset overestimated precipitation in glacial/humid regions and showed poor performance, with the poorest values of mean absolute error (2.69 mm/day), root mean square error (11.96 mm/day), correlation coefficient (0.41), Kling-Gupta efficiency score (0.33) and Theil’s U (0.70) at some stations in glacial/humid regions. Higher performance is observed in hyper-arid region, with the best values of 0.71 mm/day, 1.72 mm/day, 0.84, 0.93, and 0.37 for mean absolute error, root mean square error, correlation coefficient, Kling-Gupta Efficiency score, and Theil’s U, respectively. Merged multi-Satellite Precipitation Dataset demonstrated significant improvements as compared to TMPA across all climate regions with average improvements of 45.26% (mean bias error), 30.99% (mean absolute error), 30.1% (root mean square error), 11.34% (correlation coefficient), 9.53% (Kling-Gupta efficiency score) and 8.86% (Theil’s U). The ensemble spread and variation of DBMA-MSPD calculated using ensemble spread score and standard deviation demonstrates high spread (11.38 mm/day) and variation (12.58 mm/day) during monsoon season in the humid and glacial regions, respectively. Moreover, the improvements of DBMA-MSPD quantified against fixed weight SMA-MSPD reveals supremacy of DBMA-MSPD, higher improvements (40–50%) in glacial and humid regions.
Highlights
Precipitation is one of the integral components in climate studies and global water and energy cycles [1]
The analyses show that performance of Dynamic Bayesian Model Averaging (DBMA)-multi-satellite precipitation dataset (MSPD) increases with an increase in training time windows (TTW) duration, which supports
The current study proposed a merged multi-satellite precipitation dataset (MSPD) using Dynamic
Summary
Precipitation is one of the integral components in climate studies and global water and energy cycles [1]. Precipitation is used as a forcing data in hydrological modeling such as weather monitoring, streamflow forecasting, flood simulations and warnings, and hydrological trend analysis [2]. The accuracy of hydrological simulations and applications is contingent on the accuracy of precipitation. Conventional ground-based precipitation measurements, including rain (or snow) gauges networks and weather radar systems, are either sparsely distributed both spatially and temporally or do not exist at all due to climate variability, complex topography, human geography, and other limited conditions [3,4]. Recent advancements in remote sensing technologies provide an alternative solution to surmount the spatial and temporal limitations of conventional ground-based precipitation measurement networks Ground precipitation gauges (GPGs) are considered the most accurate method for measuring the precipitation because they provide direct precipitation observations [5].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.