Abstract

The Sano–Nakayama membrane transport model recently proposed for the analysis of a countercurrent dialyzer system has been extended to describe the concentration polarization phenomena associated with hollow fiber reverse osmosis desalination systems. A set of the governing equations, namely, the continuity, momentum and concentration equations, is derived for three distinctive phases, namely, brine, permeate and membrane phases, exploiting a volume averaging approach. These equations based on the Sano–Nakayama model are coupled and subsequently reduced to three distinctive first-order ordinary equations in terms of the average velocity, pressure and salt concentration of the brine phase. These equations along with an algebraic equation for the permeate flow rate per unit volume can readily be solved to estimate permeate salinity, permeate flow rate and pressure drop in a hollow fiber reverse osmosis desalination system. Available experimental data and numerical results based on finite difference methods are found to agree well with the present analytical estimates based on the Sano–Nakayama model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.