Abstract

We describe the design and operation of a unique hydraulic press for the study of scintillator materials under isostatic pressure. This press, capable of developing a pressure of a gigapascal, consists of a large sample chamber pressurized by a two-stage hydraulic amplifier. The optical detection of the scintillation light emitted by the sample is performed, through a large aperture optical port, by a photodetector located outside the pressure vessel. In addition to providing essential pressure-dependent studies on the emission characteristics of radioluminescent materials, this apparatus is being developed to elucidate the mechanisms behind the recently observed dependency of light-yield nonproportionality on electronic band structure. The variation of the light output of a Tl:CsI crystal under 511-keV gamma excitation and hydrostatic pressure is given as an example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.