Abstract

We amplified a full-length hepatitis B virus (HBV) genome from the serum of a chronic hepatitis B patient who experienced virological breakthrough with high HBV DNA titer following adefovir (ADV) therapy. The PCR product was cloned and sequencing of the six clones revealed an isolate of C2 subgenotype. Mutation(s) in the polymerase gene responsible for ADV resistance included rtA181T (all clones) and rtN236T (four clones). The rtA181T mutation caused the W172* nonsense mutation in the overlapping S gene. In addition, all the clones harbored another nonsense mutation in the S gene (C69*) and a 207nt in-frame deletion in the preS1 region. These clones were converted to a 1.1mer construct for transient transfection of Huh7 cells. All the clones were deficient in hepatitis B surface antigen production. Three clones had similar levels of DNA replication. Comparison with a wild-type clone of the same genotype revealed a higher intracellular level of replicative DNA for clone c4, which was reduced by putting back the deleted 207nt, but not by co-transfection with an expression construct for the three surface proteins to rescue virion production. The HBcAg expression of the c4 and c4+207nt clones was mainly in the nucleus. Co-transfection with the L/M/S proteins expression construct did not alter the distribution of core. Clone c4 showed a significantly decreased susceptibility to ADV, a mild reduction in susceptibility to lamivudine and tenofovir, but remained sensitive to entecavir. In conclusion, this is an unusual ADV-resistant HBV isolate harboring two nonsense mutations in the S gene and a large in-frame deletion in the preS1 region, but still retains a high replication phenotype, which can provide a platform for recombinant vector construction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call