Abstract

Promising three-dimensional porous scaffolds for cardiac tissue engineering should both function as conductive substrates to adapt to the electroactive nature of the myocardium and modulate the excessive reactive oxygen species (ROS) microenvironment after myocardial infarction. In this study, glutathione (GSH) is grafted to the terminal carboxyl groups of carboxyl-capped aniline pentamer (CCAP), forming AP-GSH that is then introduced into gelatin (Gel) scaffold to create a composite scaffold combining both conductivity and antioxidant activity. Results suggest that the Gel/AP-GSH composite scaffolds exhibit high porosity, homogeneous pore structure and high swelling behaviors. The conductivity of the Gel/AP-GSH scaffold ranges from 3.4 × 10−5 S/cm to 1 × 10−4 S/cm, which is similar to the native myocardium. The introduction of AP-GSH can remove intracellular ROS and decrease the oxidative stress damage in brown adipose-derived stem cells (BADSCs), further improving the adhesion and proliferation of BADSCs under the ROS microenvironment. Moreover, BADSCs seeded in the Gel/AP-GSH composite scaffold maintain high cardiomyogenic differentiation even under the ROS microenvironment. These results demonstrate that Gel/AP-GSH composite scaffolds can be used as a promising candidate for cardiac tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.