Abstract

An antifouling electrochemical biosensor was constructed based on chondroitin sulfate (CS)-functionalized polyaniline (CS/PANI) and DNA-peptide conjugates that is capable of assaying cortisol directly in human fluids. First, a CS-doped PANI nanocomposite (sensing substrate) was electrodeposited onto a bare glassy carbon electrode to promote electron transport, providing the sensing signal from high peak currents of PANI to improve the sensitivity of the biosensor. Dendritic DNA-peptide conjugates were assembled onto the CS/PANI by exploiting the highly specific and strong interactions between biotin and streptavidin, which amplified the sensing signals toward cortisol. The integration of the DNA-peptide conjugates into the CS/PANI nanocomposite ensured that the biosensor had a synergistic antifouling effect and was capable of detecting cortisol directly in body fluids (sweat, saliva, and tears). When assaying cortisol levels, the biosensor exhibited a linear range over the cortisol concentrations of 1 × 10-12-1 × 10-7 M and a low limit of detection (0.333 × 10-12 M). In the detection of cortisol in real samples, the relative standard deviation (RSD) of the biological samples ranged from 2.94 to 4.23%, and the recovery were calculated to be in the range 95.2-103.2%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call