Abstract

In this paper, the role of the halogen bond in capillary monolithic column microextraction was explored for the first time. Benzene-1,3,5-tricarbohydrazide (BTH) was synthesized as a functional monomer, N, N′-methylene bisacrylamide (MBA) and divinyl benzene (DVB) were used as cross-linking agents, the hybrid monolithic column of poly (BTH-co-DVB-co-MBA) was prepared using methanol and polyethylene glycol as pore-forming agents and azodiisobutyronitrile as the initiator. Due to the existence of BTH, a large number of nitrogen atoms (Lewis base) were introduced into the monolithic column, which could form a halogen bond with chlorine-containing organic pollutants and enhance its adsorption performance. Based on the monolithic column, a sensitive and environment-friendly solid-phase microextraction technology was studied. The monolithic column was integrated with high-performance liquid chromatography (HPLC) to extract and detect four kinds of chlorophenol in real water samples. Under best conditions, the method showed excellent extraction ability and linearity, with a linear correlation coefficient of 0.9958–0.9987, a low detection limit (LOD) of 0.04–0.23 μg L−1 (S/N = 3), and relative standard deviation (RSD) less than 3.09%. The recovery rate was kept between 87.30% and 123.00%, and the RSD was less than 3.83%, which indicated that the column had powerful capture performance, high precision, and strong anti-matrix interference ability in the real sample, and had potential application value in practical work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call