Abstract

Fiber placement technologies allow for manufacturing of complex-shaped composite parts with load-adapted fiber orientation. For design of corresponding structures, topology optimization is well-established. However, anisotropic topology optimization approaches are often limited to unidirectional fiber orientations. In truss-like topology optimized structures, the intersections between the individual trusses are subject to multiaxial stress states. For those, a unidirectional fiber orientation is not appropriate and may not be suitable for manufacturing.In this work we propose a topology optimization procedure that allows for unidirectional but also biaxial fiber orientations. The choice between unidirectional and biaxial fiber layout is based on the stress state within the finite elements. For the biaxial fiber layout, the first fiber angle is aligned with the maximum absolute principal stress direction, while the second fiber orientation is calculated using composite net theory.Results show that considering biaxial fiber orientations leads to fiber orientations that can be better manufactured by fiber placement technologies and are considered suitable for automatic derivation of manufacturing-tolerant placement paths. Furthermore, the stress state at intersections is improved reducing the probability of inter fiber failure. In addition, consideration of biaxial fiber orientations could increase the stiffness at constant weight compared to purely unidirectional topology optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call